

VIEWPixx / EEG (VPX-VPX-2006B)

Installation Guide Version 1.2

Phone: (514) 328-7499 1 (844) 488-7499 - Toll Free USA/Canada EMAIL: support@vpixx.com VPixx Technologies Inc. reserves the right to modify or otherwise update this document without notice as required by a constantly evolving marketplace, client requests or to adapt to new progress or constraints in engineering or manufacturing technology. The information contained in this document may change without prior notice.

No part of the written material accompanying this product may be copied or reproduced in any form, in an electric retrieval system or otherwise, without prior written consent of VPixx Technologies Inc.

Product/company names mentioned in this document are the trademarks of their respective owners.

VIEWPixx, DATAPixx, PROPixx, are registered Trademarks of VPixx Technologies Inc.

For more information about our company and products, visit our Web site at www.vpixx.com

For information, comments or suggestions, please contact us by e-mail at support@vpixx.com

Our offices are located at:

630 Clairevue West suite 301 Saint-Bruno, Qc Canada, J3V 6B4

Version History of this document

Version Updated to	Date	Author	Reason
1.0	2014/10/29	P.Kakos	v1.0 release
1.1	2016/10/29	P.Kakos	New part number
1.2	2020/04/20	JF Hamelin	Maintenance
1.3	2021/08/18	P.Kakos	Update to Preliminary assembly steps

Document Icons

The use of icons emphasizes helpful, caution or warning notes. Below is a list of the icons available.

lcon	Туре	Description
•	Helpful Hint	Information to help out during assembly, installation or usage
•	Caution Notice	Important Information to prevent misuse and/or damage to equipment
	Warning	Critical information to prevent damage to equipment and/or personnel

Table of Contents

Table of Contents	2
Table of Tables	3
Table of Figures	3
Overview	4
WARNING - SAFETY INFORMATION & PRECAUTIONS	4
Safety precautions	4
Compliance Information	5
For European Countries	5
For the United States of America	6
For Canada	6
Declaration of RoHS Compliance	6
Hardware and software requirements	7
Graphics Card	7
USB 2.0	7
Operating System	7
General specifications	8
LCD specifications	8
Pixel specifications	8
Backlight specifications	8
Video processing	8
Digital output	8
Power	9
VIEWPixx /EEG stand	9
Connectivity	9
Dimensions	9
VIEWPixx /EEG installation	10
Prepare the location	10
Assemble the required equipment and tools	10
Preliminary Assembly Steps	11
Cable installation	14

I/O connector descriptions	15
Digital Output Connector	15
Theory of operation	16
Video and output synchronization	16
Video Pipeline	16
VIEWPixx EGG pixel representation	17
Optimization	18
Digital interface	19
Cables	19
Display luminance	20
LED configuration	20
Scanning backlight	21
VIEWPixx /EEG Firmware update	24
Maintenance and Calibration	25
Calibrating the VIEWPixx /EEG	25
Cleaning the VIEWPixx /EEG	25
Warranty	26

Table of Tables

TABLE 1 DIGITAL OUTPUT CONNECTOR	15
TABLE 2 PINS VS DOUT	17

Table of Figures

FIGURE 1 VIEWPIXX /EEG DIMENSIONS	9
FIGURE 2 VIEWPIXX /EEG CONNECTORS	14
FIGURE 3 PIXEL MODE	19
FIGURE 4 LED MATRIX CONFIGURATION	20
FIGURE 5 SCANNING BACKLIGHT	21
FIGURE 6 PIXEL RESPONSE TIME INFORMATION (120 HZ ALTERNATING WHITE BLACK)	21
FIGURE 7 TYPICAL CONSUMER LCD PIXEL RESPONSE TIME	22
FIGURE 8 VIEWPIXX /EEG PIXEL RESPONSE TIME (WITH SCANNING BACKLIGHT)	22
FIGURE 9 VIEWPIXX /EEG PIXEL RESPONSE TIME (CONSTANT WHITE SIGNAL)	23

Overview

This manual provides installation, usage, maintenance and troubleshooting information for VPixx Technologies Inc.'s VIEWPixx /EEG system.

For technical questions or product support information, do not hesitate to contact the VPixx support team by sending an E-mail at support@vpixx.com or by phone.

By creating your *MyVPixx* account on the VPixx Technologies website, you will have access to additional product documentation, demos, source code examples and the latest firmware and software drivers.

WARNING - SAFETY INFORMATION & PRECAUTIONS

Safety precautions

- Use only a power source and connection compatible with this product, as indicated on the label of the power adapter. A power cord is included with the VIEWPixx /EEG. If another cord is used, be sure that the power source and connection are appropriate.
- Be sure that the total ampere rating of the products connected to the outlet does not exceed the maximum ampere rating of the electrical outlet, and that the total ampere rating of the products connected to the power cord does not exceed the maximum ampere rating of the power cord. Look on the power label to determine the ampere rating (Amps or A) for each device.
- Install the VIEWPixx /EEG near a power outlet that you can easily reach. Disconnect it by grasping the plug firmly and pulling it from the outlet. Never disconnect the monitor by pulling directly on the cord.

Compliance Information

For European Countries

((
	DECLARATION OF CONFORMITY
Manufacturer's Name: VPixx	Technologies Inc.
Manufacturer's Address:	630 Clairevue West suite 301
	Saint-Bruno, Qc
	Canada, J3V 6B4
Product Name: VIEWPixx /EE	G
Part Numbers: VPX-VPX-2006	5B
Product Options : All	
Application of Council Directi	ve:
2014/30/EU	-Electromagnetic Compatibility directive
2015/863/EU	-RoHS directive
2012/19/EU	-Waste Electrical and Electronic Equipment directive
The following harmonised sta	andards have been used:
EN 61326-1:2013	-Electrical equipment for measurement, control and laboratory use.
• IEC CISPR 11	-Radio frequency disturbance characteristics (Class A)
• IEC 61000-3-2	-Limits for harmonic current emissions (Class D)
 IEC 61000-3-3 	 -Limitation of voltage changes, voltage flicker (≤16A per phase)
 IEC 61000-4-2 	-Electrostatic discharge immunity test (Level 2 contact, air) (Perf Criteria B)
 IEC 61000-4-3 	-Radiated, radio-frequency, electromagnetic field immunity test (Level 2, Perf Criteria A)
• IEC 61000-4-4	-Electrical fast transient/burst immunity test (Level 2, Perf Criteria B)
• IEC 61000-4-5	-Surge immunity test (Level 2, Perf Criteria B)
• IEC 61000-4-6	-Immunity to conducted disturbances, induced by radio-frequency fields (Level 2, Perf Criteria A)
 IEC 61000-4-8 	-Power frequency magnetic field immunity test (Level 2, Perf Criteria A)

Supplementary Information:

• IEC 61000-4-11

To remain CE compliant, only CE compliant parts should be used with this product. Maintaining CE compliance also requires proper cable and cabling techniques. VPixx Technologies will not retest systems or components that have been modified by customers.

Fromelin

Signature:

Printed name: Jean-François Hamelin, Eng

Title: Vice President

-Voltage dips, short interruptions and voltage variations immunity tests (Perf Criteria B and C)

6

The following information is only for EU member states:

The mark shown to the left is in compliance with the Waste Electrical and Electronic Equipment directive 2012/19/EU (WEEE). The mark indicates the requirement NOT to dispose of the equipment as unsorted municipal waste. For more information call VPixx Technologies Inc. or email us at <u>support@vpixx.com</u>

For the United States of America

This device complies with part 15 subpart B of FCC rules. Its operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 subpart B of the FCC rules.

For Canada

This Class A digital apparatus complies with Canadian ICES-003.

Declaration of RoHS Compliance

RoHS This product has been designed and manufactured in compliance with Directive **2015/863/EU** of the European Parliament and the Council on restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS Directive).

Hardware and software requirements

Graphics Card

The graphics card should have dual-link DVI outputs, or DisplayPort/Thunderbolt outputs (which can be converted to dual-link DVI through an active dongle).

All DisplayPort adaptors are not created equal. The limitation is the 320 MHz video bandwidth which your graphics board can transmit over a dual-link DVI video cable. This is enough bandwidth to generate a full 1920x1200 (or 1080) image at 120 Hz.

We strongly recommend using the following adaptor, which can be obtained from VPixx Technologies or Startech: <u>https://www.startech.com/en-us/audio-video-products/dp2dvid2</u>

USB 2.0

The host computer requires at least one USB 2.0 interface.

Operating System

The VIEWPixx /EEG is compatible with the following OS: MAC OS X, Windows 7 (32bit, 64bit), Windows 8 (32bit, 64bit) and Linux.

General specifications

The VIEWPixx /EEG is an affordable high quality display which has been optimized specifically for triggering external data acquisition systems to precisely timed visual stimuli. The VIEWPixx /EEG features LCD glass with the fastest possible pixel response as well as a panel controller which has been custom designed for neurophysiology, cognition, and psychophysics research. Our innovative scanning LED backlight design eliminates ghosting and has superior display uniformity. In addition the VIEWPixx /EEG includes 24 TTL output triggers for synchronizing external data acquisition systems such as EEG and eye trackers with microsecond precision. The triggers can also be used to initiate external stimulators such as TMS. The levels of the 24 TTL outputs are controlled by the 8-bit RGB components of the display's top-left pixel. This strategy makes it simple to program with any stimulus generation software, and guarantees perfect synchronization between video and external hardware.

LCD specifications

- Display resolution: 1920(H) x 1080(V) pixels
- 24-inch display size (diagonal)
- Pixel arrangement: RGB (Red dot, Green dot, Blue dot) vertical strip
- TFT LCD
- Contrast ratio: Typical 1000:1
- Viewing angle: 170° (Horizontal), 160° (Vertical)
- Polarizer surface: Antiglare
- 100 Hz to 120 Hz refresh rate with zero latency stimulus presentation
- 60 Hz to 100 Hz refresh rate with internal frame buffering

Pixel specifications

- Pixel rise and fall time symmetry
- Pixel response time : 1 ms typical (black to white)
- 8 bits of resolution on each of the RGB channels
- Pixel pitch: 0.2715(H) x 0.2715(V) mm

Backlight specifications

- Luminance: 100 cd/m²
- Scanning LED backlight
- Full array of white LEDs
- Display luminance uniformity: 95% over 95% of display area
- Display color uniformity: 90% over 95% of display area

Video processing

- Video input: 1920 x 1080 pixels, 60 to 120 Hz, 24 bits (Dual link DVI)
- Deterministic timing between reception of video signal and update of display pixels
- Completely bypass all image processing "enhancements" prevalent in standard consumer LCD panels

Digital output

• Number of digital outputs: 24 on db-25 connector

- Controlled by the first pixel (8bit Red, 8bit Green and 8bit Blue)
- Output drive stage: 5V through 25 Ω series resistor
- Maximum output current:
 - Source: 15 mA Sink: 12 mA

Power

- Power consumption: 100 W
- Input voltage: 12 Vdc 8.33 A
- International AC adaptor input: 90 Vac 264 Vac (47 Hz 63 Hz)

VIEWPixx / EEG stand

- Mounting standards: VESA MIS-D/E, MIS-F
- Hole pattern: 100 x 100 mm & 75 x 75 mm

T	Ø	D	Ô	
Lift	Tilt	Pan	Rotation	VESA
5″ 13 cm	30°	Base 360°	90° P/L	MIS-D/E MIS-F

Connectivity

- 1x USB 2.0 type B (for firmware update)
- 1x DB-25 female
- 1x Dual Link DVI Input
- 1x Power receptacle

Dimensions

Figure 1 VIEWPixx /EEG dimensions

VIEWPixx / EEG installation

Unpack the VIEWPixx /EEG and prepare a flat area to assemble the monitor. You will need a flat, soft and protected area for placing the monitor screen-down while preparing it for installation.

Ensure that while installing/handling the VIEWPixx /EEG, **you do not** drop the VIEWPixx /EEG, scratch its surface or place equipment or tools directly on the VIEWPixx /EEG.

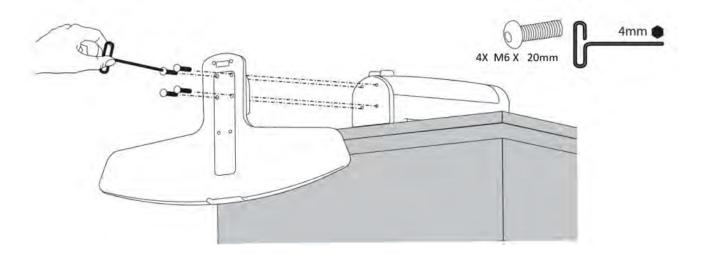
Prepare the location

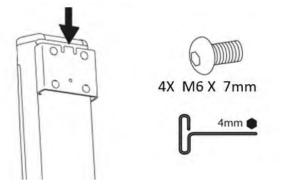
Make sure the location where you place the device meets the following requirements:

- The VIEWPixx /EEG vent is not blocked
- Enough room remains behind the VIEWPixx /EEG to allow for a good airflow
- The VIEWPixx /EEG does not rest on an unstable surface
- The VIEWPixx /EEG is in a well-ventilated area, away from excessive light, heat, or moisture

Temperature Consideration: When choosing the proper location to place your device, it is important to know that LED performance largely depends on the ambient temperature of the operating environment. VPixx Technologies therefore strongly recommends choosing a location having an operating temperature range between 20°C and 28°C (68°F to 82°F). To attain optimal display uniformity, the warm-up time is around 20 minutes. This should be taken into consideration before running experiments or taking photometric measurements.

Assemble the required equipment and tools

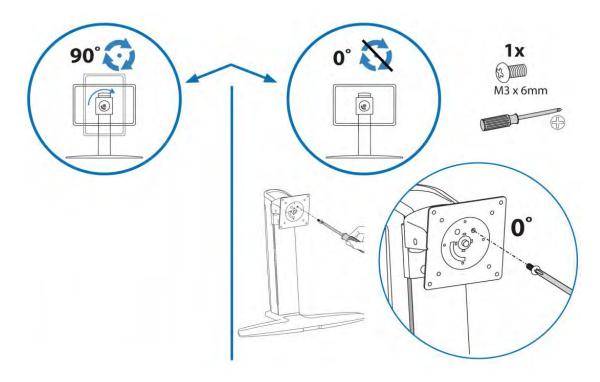

Your VIEWPixx /EEG product should contain the following tools to complete your assembly and installation.

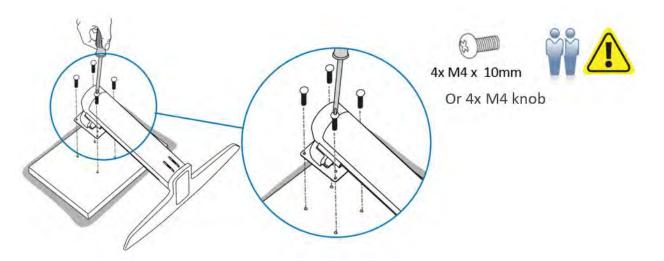

Preliminary Assembly Steps

Start your installation with the following preliminary assembly steps, which each offer a visual representation of the required manipulations and tools.

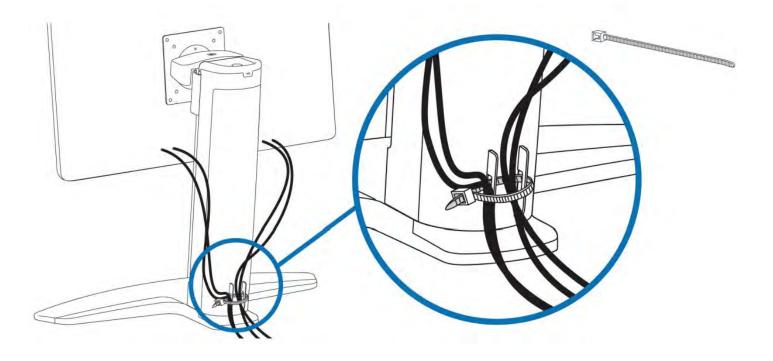
1. Secure the base to the stand.

2. Secure the LCD bracket to the stand by first sliding down the bracket over the stand's sliding rail, then use the 4 M6 x 7mm screws to secure it in its desired position. **Ensure that the two grooves are positioned at the top**.




12

- 3. Secure the LCD tilt bracket to the LCD bracket using the M5 x 8mm screw and a Phillips screwdriver.


4. (Optional): Use the M3 x 6mm screw to eliminate the possibility of rotating the monitor.

5. (Optional): Use 4x M4 x 10mm (Or 4x M4 knob) to secure the VIEWPixx monitor to the stand.

6. Secure the screen cables to the back of the stand using a plastic tie-wrap.

13

Cable installation

You can rotate the VIEWPixx /EEG as shown below for easy access to all connectors.

Figure 2 VIEWPixx /EEG connectors

- 1. Connect the DVI cable between the VIEWPixx /EEG and your computer.
- 2. Connect the AC adaptor. Use only the AC adaptor that comes with your VIEWPixx /EEG. The wrong type of AC adaptor will damage the system and its components.
- 3. Disconnect power from the product by unplugging the power cord from the electrical outlet.

Install the VIEWPixx /EEG near a power outlet that you can easily reach. Disconnect it by grasping the plug firmly and pulling it from the outlet. Never disconnect the monitor by pulling directly on the cord.

The USB interface is used only for firmware updates.

I/O connector descriptions

Digital Output Connector

The following table shows the digital output pin assignment.

Table 1 Digital Output connector

Pin	Description	Pin	Description	
1	Digital Out 0	14	Digital Out 1	
2	Digital Out 2	15	Digital Out 3	
3	Digital Out 4	16	Digital Out 5	
4	Digital Out 6	17	Digital Out 7	
5	Digital Out 8	18	Digital Out 9	
6	Digital Out 10	19	Digital Out 11	
7	Digital Out 12	20	Digital Out 13	
8	Digital Out 14	21 Digital Out 15		
9	Digital Out 16	22	Digital Out 17	
10	Digital Out 18	23	Digital Out 19	
11	Digital Out 20	24	Digital Out 21	
12	Digital Out 22	25	Digital Out 23	
13	GND	Shield *		

* Shield is tied to the GND by a 0 Ohm resistor inside the VIEWPixx / EEG system.

Connector type: D-SUB, 25 pins *Gender:* Female

Theory of operation

Video and output synchronization

The VIEWPixx /EEG has two ways of treating incoming video. For timing-critical research, the incoming video should have a resolution of 1920 x 1080, and a refresh rate of 100-120 Hz. Under these conditions, the VIEWPixx /EEG displays the video with no processing delay, and the digital output subsystem has microsecond-precise synchronization with the incoming video. If the resolution drops below 1920x1080, or the refresh rate drops below 100 Hz, then the VIEWPixx /EEG begins to operate as a normal LCD panel. Incoming video is scanned into an internal frame buffer, then rescanned out to the display. This mode should only be used when not running timing-critical experiments.

If the display is used with rescanned video input, a small red square appears at the top-left corner as a reminder not to use this configuration for timing-critical experiments.

Video Pipeline

A video signal contains all the pixels for every frame. The resolution determines the amount of pixels: for example, 1920 x 1080 means 1920*1080 pixels on your screen. Each of these pixels contains the color information it will show on screen.

Colors are described using the RGB (Red-Green-Blue) format. For every video frame, each pixel has access to 24 bits of color information (8 bits per color). This means, for example, that red can take values from 0 to 255 and consequently that 256 different shades of red are possible. Red 0 signifies no red, while red 255 signifies 100% red color. All of the three colors (RGB) have 8 bits, which creates 16 777 216 different possible colors. RGB colors are usually represented as (R,G,B), where R, G and B are the respective color values [0-255].

A color is usually described with 8 bits of information. 8-bit information can be seen as $R_7R_6R_5R_4R_3R_2R_1R_0$, which is a binary representation of the color (in this example, R for Red). Every bit (R_i) can take the value 0 or 1, and the final value will be a sum:

$$Red = \sum_{i=0}^{i=7} 2^i * R_i$$

The color red 255 would be represented as 0b1111111, whereas red 16 would be 0b00010000. Since 255 represents every bit at a value of 1, it is the maximum value for an 8-bit number.

VIEWPixx EGG pixel representation

By considering the pixel final color as a composition of red, green and blue, it can be understood how we map the 24 bits of information from a pixel color to the 24-bit output of the Digital Out of the VIEWPixx /EEG.

The VIEWPixx /EEG takes the top-left pixel's 24-bit color information and triggers the digital outputs with these 24 bits of information.

Pin versus Dout

A pin is a physical output to which the physical trigger cable is connected. D_{out} is how we digitally map it inside the device.

D_{out} 0-7 are mapped to red.

D_{out} 8-15 are mapped to green.

D_{out} 16-23 are mapped to blue.

Table 2 Pins VS Dout

Desired D _{out} to trigger	Value to add	Color and number	Desired physical pin to trigger
0	1	Red 0	Pin 1
1	2	Red 1	Pin 14
2	4	Red 2	Pin 2
3	8	Red 3	Pin 15
4	16	Red 4	Pin 3
5	32	Red 5	Pin 16
6	64	Red 6	Pin 4
7	128	Red 7	Pin 17
8	1	Green 0	Pin 5
9	2	Green 1	Pin 18
10	4	Green 2	Pin 6
11	8	Green 3	Pin 19
12	16	Green 4	Pin 7
13	32	Green 5	Pin 20
14	64	Green 6	Pin 8
15	128	Green 7	Pin 21
16	1	Blue 0	Pin 9
17	2	Blue 1	Pin 22
18	4	Blue 2	Pin 10
19	8	Blue 3	Pin 23
20	16	Blue 4	Pin 11
21	32	Blue 5	Pin 24
22	64	Blue 6	Pin 12
23	128	Blue 7	Pin 25

How to interact with the VIEWPixx EEG triggers

Follow this simple procedure to handle the EEG triggers:

- 1- Select the D_{out} you want to trigger
- 2- Set the basic color to black (0,0,0)
- 3- Add the value for the desired D_{out} to the desired color
- 4- Set the top-left pixel to the resulting color.

For example: if you wish to trigger D_{out} 4-5-12-14, you would:

D_{out} 4 – add 16 to red

D_{out} 5 – add 32 to red

D_{out} 12 – add 16 to green

D_{out} 14 – add 64 to green

The resulting color would then be: (16+32,16+64,0) = (48, 80, 0)

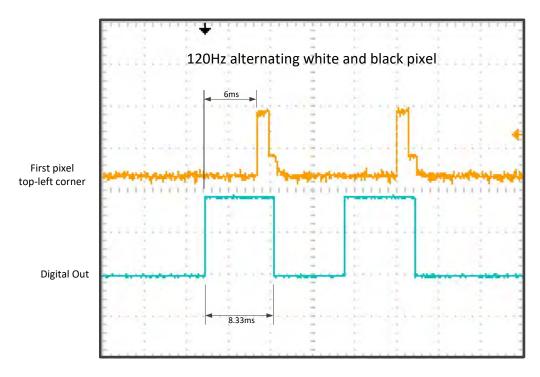
And if we look at the reverse situation: you wish to convert the color to its 8-bit (binary) representation.

For example: you want to know which D_{out} will be ON if the color is gray (143, 123, 152) \rightarrow (0b10001111, 0b01111011, 0b10011000)

R ₇	R ₆	R ₅	R ₄	R ₃	R ₂	R ₁	R ₀
1	0	0	0	1	1	1	1
G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G1	G ₀
0	1	1	1	1	0	1	1
B ₇	B ₆	B 5	B ₄	B ₃	B ₂	B ₁	B ₀
1	0	0	1	1	0	0	0

Using that representation and knowing how the D_{out} are represented (0-7 is red, 8-15 is green, 16-23 is blue), we see that D_{out} 0,1,2,3,7,8,9,11,12,13,14,19,20,23 are currently ON.

Optimization


Some graphic cards have **dithering** as a feature/disadvantage. Dithering may alter the values of the colors that are sent, in the range of ±1. This can be disastrous for triggers since it can enable/disable a trigger you were counting on.

For example: we are triggering on D_{out} 7, so the color is set to (128 (0b1000000), 0, 0), but the graphics card decides to change it to 127 (0b01111111): instead of triggering D_{out} 7, we are now triggering D_{out} 0, 1, 2, 3, 4, 5 and 6. In order to prevent problems like this, we suggest using the most significant bits to do any kind of triggering and using numbers that cannot be affected by ±1. For example, if we wanted to trigger on D_{out} 7 and ignore D_{out} 0-3, we would use the color (128+8 (0b10001000), 0, 0), so 127+8/129+8 (0b1000111/0b10001001) would still have D_{out} 7 on.

Digital interface

The VIEWPixx /EEG contains 24 TTL outputs. The levels of the 24 TTL outputs are controlled by the 8-bit RGB components of the display's top-left pixel. This strategy is simple to program with any stimulus generation software, and guarantees perfect synchronization between video and external hardware.

The following picture shows the delay between the digital output and stabilization of the first top-left pixel with the scanning backlight. This delay is constant and is always 6 ms after the digital output's rising edge.

Figure 3 Pixel Mode

Cables

It is important to remember that most of the physical cables only make use of 8 triggers. It is therefore important to know exactly which D_{out} they are connected to.

<u>Cable VPX-ACC-1012</u> is used to mix (LOGICAL OR) the EEG signal with a previously constructed 8-bit signal to connect to a device with 8 triggers. The signals taken from the VIEWPixx /EEG are generated from Green 7, Green 6, Green 5, Green 4 and Red 7, Red 6, Red 5, Red 4. You also have access to 2 BNC cables which are triggered with Blue 7 and Blue 6. As explained in the optimization chapter, it is suggested to add 8 to your color value to protect from dithering since you are not using the least significant bits of all three colors with this cable.

<u>Cable VPX-ACC-1010</u> is used for the EEG signal with another independent 8-bit signal to connect to a device with 16 triggers. The signals taken from the VIEWPixx /EEG are generated from Green 7, Green 6, Green 5, Green 4 and Red 7, Red 6, Red 5 and Red 4. You also have access to 2 BNC cables which are triggered with Blue 7 and Blue 6. As explained in the optimization chapter, it is suggested to add 8 to your color value to protect from dithering since you are not using the least significant bits of all three colors with this cable.

For more information, or if you have any question, feel free to contact VPixx Technologies at support@vpixx.com

Display luminance

The VIEWPixx /EEG is factory calibrated at 100 cd/m² with a native gamma very close to 2.2. Because LED performance depends on the ambient temperature of the operating environment, VPixx Technologies strongly recommends an operating temperature range between **20°C and 28°C (68°F to 82°F)**. To attain optimal uniformity, the warm-up time is around 20 minutes and should be taken into consideration before your experiments.

You can change the backlight intensity with the PyPixx program. By reducing the intensity for low luminance stimulus, you maintain the high bit depth video for the entire luminance range of your stimulus.

For more information on the PyPixx program, please refer to the **Application Guide for VPixx Products** on *MyVPixx*.

LED configuration

The following diagram shows the LED matrix configuration in the VIEWPixx /EEG. A total of 448 LEDs are distributed into 56 cells to obtain excellent uniformity on the display.

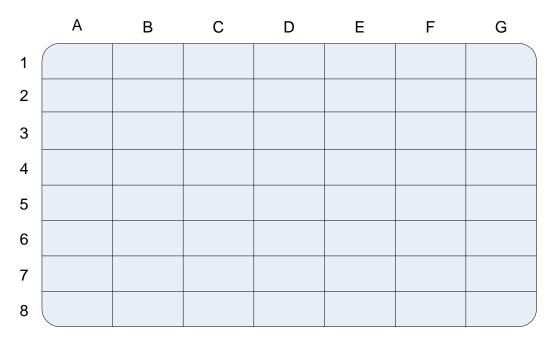


Figure 4 LED matrix configuration

Scanning backlight

The VIEWPixx /EEG will have display timing characteristics that resemble those of a CRT. The backlight LEDs are powered only within a narrow horizontal bar, and the bar is scanned from the top of the display to the bottom. The scanning is synchronized to the LCD pixel updates, effectively hiding much of the liquid crystal rise/fall time. The scanning backlight is used to improve the display characteristics of dynamic visual stimuli.

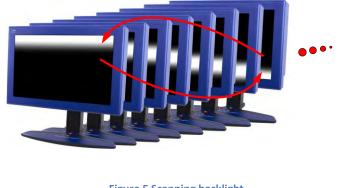


Figure 5 Scanning backlight

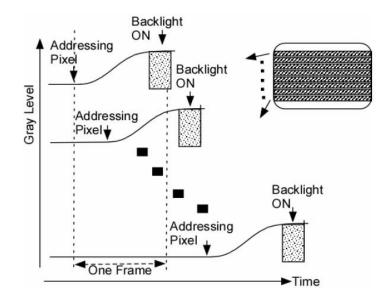
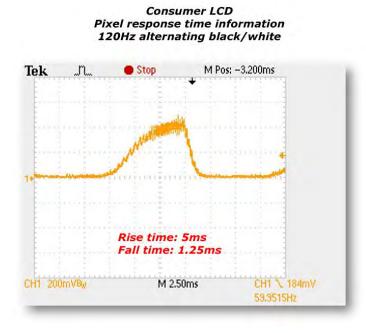



Figure 6 Pixel response time information (120 Hz alternating white black)

As you can see in the following three graphs, use of the scanning backlight can drastically reduce pixel response time, which in turn eliminates the blurring effect of moving stimuli.



Figure 7 demonstrates pixel response times for a 120 Hz alternating black/white signal. This is an example of a typical consumer LCD. It shows a pixel rise time of 5 ms and a fall time of 1.25 ms.

Figure 7 Typical consumer LCD pixel response time

Conversely, for the same signal, use of a scanning backlight shows a pixel rise time of 1 ms and a fall time of 1 ms, as shown on Figure 8 below.

120Hz alternating black/white with scanning backlight

VIEWPixx / EEG Pixel response time information

Figure 8 VIEWPixx /EEG pixel response time (with scanning backlight)

Finally, use of a scanning backlight for a 120 Hz constant white signal shows a pixel rise time of 1 ms and a fall time of 1 ms, as shown on Figure 9 below.

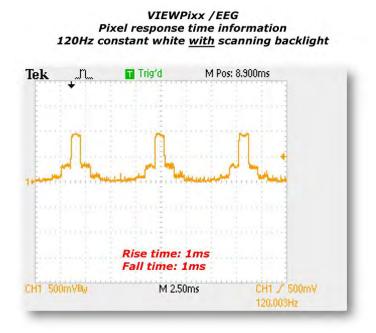


Figure 9 VIEWPixx /EEG pixel response time (constant white signal)

VIEWPixx / EEG Firmware update

The USB cable is supplied with your monitor for firmware updates only. Your VIEWPixx /EEG is plug and play and does not require drivers for normal operation except for firmware update operations.

For more information on firmware update, please refer to the **Application Guide for VPixx Products** on MyVPixx.

24

Maintenance and Calibration

Calibrating the VIEWPixx / EEG

Calibrating the VIEWPixx /EEG display requires the use of the X-Rite i1Pro spectrophotometer or the X-Rite i1Display Pro.

For more information on calibrating the VIEWPixx /EEG, please refer to the **Application Guide for VPixx Products** on MyVPixx.

Cleaning the VIEWPixx / EEG

Clean the surface of your VIEWPixx /EEG as required and depending on usage. Turn your monitor off and unplug the power cord. Clean the monitor surface with a lint-free, non-abrasive cloth. Stubborn stains may be removed with a cloth dampened with mild cleaner. Avoid using a cleaner containing alcohol or acetone. Use a cleaner intended for use with the monitor. Never spray cleaner directly on the screen, as it may drip inside the monitor and cause an electric shock.

Do not apply pressure to, or rub, the sensitive product surface.

Do not use cleaners that contain any petroleum-based materials such as benzene, thinner, acetone, alcohol or any volatile substance to clean the LCD monitor screen

Warranty

The VIEWPixx /EEG is warranted against manufacturing defects in materials and workmanship for two years for parts and labor from the date of purchase.

VPixx Technologies Inc.

630 Clairevue West Suite 301 Saint-Bruno, Qc Canada, J3V 6B4

TOLL FREE : (844) 488-7499 (USA/Canada) TEL/FAX: (514) 328-7499 EMAIL: sales@vpixx.com